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Abstract. The concept that universal 1/f noise is caused by defect migration is shown to be
supported by experimental results and further theoretical development. Migrating defects are
bombarded by conduction electrons and are driven against adjacent lattice atoms forming an
impacted mass. It is predicted that a time constant, τs , defined as the average time taken for a
single non-impacted defect to impact against an adjacent atom, would consequently vary with the
externally applied current, I0. This would then, in turn, cause the high-frequency cut-off point
of 1/f noise, fs = τ−1

s , to vary with I0. For the case of a carbon conductor not only was this
observation experimentally verified but also numerous new properties of 1/f noise were discovered.
Among these were the following. (1) The curve of fs versus I0 exhibited resonances. (2) It was
found that the more rigid the lattice was the closer the noise was to an exact 1/f response with a
value fitting the Hooge empirical formula. (3) The noise spectrum above fs was found to behave as
f 2(κ−1) with an attenuating parameter κ = Iκ/(I0 + Iκ ) where I 2

κ R0 is the thermal energy flowing
in the direction of the current as given by the Stefan–Boltzmann law. (4) A zero-current (I0 = 0)
noise source was found with an amplitude given by S(ω) = √

m−/m+(I
2
κ /N0)f

−1. (5) A definite
low-frequency end to the observable 1/f dependence was also found as indicated by a change from
a 1/f to a 1/f 2 frequency dependence as predicted by the theory.

1. Introduction

There is a large body of evidence showing that universal 1/f noise is caused by defect migration
[1–21]. The term ‘universal 1/f noise’ is taken here to mean the 1/f noise observed in all
metallic conductors and semiconductors that is generated by the same mechanism, but is not
intended to mean all possible forms of 1/f noise that are observed. A previously published
theory of the origin of 1/f noise [22, 23] was based on the concept that a theory of 1/f
noise could be formulated from a viewpoint not significantly different from that used for the
explanation of generation–recombination noise or thermal noise. It was shown that defects
of any kind, including defects created by thermal fluctuations, influence the initial velocity of
conduction electrons after a lattice collision in a manner that creates 1/f noise. Experiments
designed to verify this theory resulted in the discovery of numerous characteristics of 1/f
noise that apparently have not been reported previously. The explanation of these observations
required further development of the original theory.

Using the elementary model proposed, the high-frequency cut-off of the spectral density
of 1/f noise was theoretically found to be dependent on a parameter τs which is a time constant
that is defined as the average time that it takes bombarding conduction electrons to move a single
non-impacted lattice defect to a position of impact against an adjacent neighbour atom. After
this first impact the time interval required increases as the number of impacted atoms builds
up. The reciprocal of τs is the frequency fs , which is the upper limit of the 1/f noise spectrum
at which the frequency dependence of this mechanism changes to another dependence. Since
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τs is field dependent, fs would vary with the applied field. Finding this variation was a major
step in verifying the theory, or, at least, showing that this prediction of the theory is borne out
experimentally.

2. Experimental methods

It is first necessary to obtain samples that exhibit a high-frequency cut-off of the 1/f depend-
ence at a point above the thermal noise. This is difficult for metallic conductors since 1/f
noise is often of low amplitude due to the high values ofN0, placing the high-frequency cut-off
of the 1/f response at a point where it is less than the thermal noise. Increasing the current to
increase the observed noise results in excessive sample heating making the results questionable.
Although this characteristic response was observed experimentally in older types of carbon
composition resistors some time ago, where fs was definitely observed to vary with I0, the use
of resistors salvaged from ancient equipment and of unknown manufacture was not considered
satisfactory for a serious study. Recently manufactured carbon resistors, which are either of
carbon film or of hot-moulded carbon composition, did not exhibit this high-frequency limit
in our experiments. It was also not known whether these older resistors had this property
due to aging of the carbon or as a consequence of the method of manufacture. A number of
attempts at making resistors from chemically etched thin films or carbon deposits, as well as
similar attempts with metal films, did not duplicate this property. Finally, a primitive method
of making carbon resistors was attempted which consisted of drawing a thick line of india ink
on file card stock. The desired response was found with this arrangement. Not only was a high-
frequency end to the 1/f response observed within a measuring region that was well above
the thermal noise, but an unexpected low-frequency switch from a 1/f to a 1/f 2 response was
also observed for many samples.

Because of the unusual results found, a detailed description of the fabrication and
measuring methods will be given. The resistors were made by slowly drawing multiple over-
lapping lines of india ink on ordinary 3′′ × 5′′ file card stock which was 0.007′′ thick. It is
important that the ink soaks through the file card stock to the other side. This is necessary
since if little ink penetration occurs some of the results described here would not be observed
because of the reduced cross-sectional area. Also avalanche or popcorn noise would occur
due to this low cross-sectional area and consequent high current density. This latter noise
source is recognized from the appearance of short irregularly spaced rectangular pulses of
roughly 1 to 10 ms duration with amplitudes well above the noise level being observed. This
is accompanied by increases in the observed slope of the 1/f noise above the usually observed
value of ∼1. Ink penetration was checked by microscopically examining a micro-toned cross
section of the resistor. End electrodes were applied using silver print. The india ink used was
Rapidgraph© 3080-F†. The measured noise spectra of these resistors were stable over several
days but slowly changed, possibly due to crystallization of the carbon, as indicated by a very
gradual decrease in the sample resistance.

The noise originating from these resistors was AC coupled, with a time constant of 1 s, to
an amplifier consisting of an LM725 and an LM741 wired for an overall gain of 1000. Noise
spectrum analysis was performed with a Hewlett-Packard© Model 302A low-frequency wave
analyser having a frequency range of 10 Hz to 50 kHz, the output of which was coupled to a
Compaq PC. Corrections were made by the computer for the loading of a ten-turn potentiometer
used to vary the battery voltage to the sample and a wire-wound series loading resistor of
10 k�. The system-generated noise was substantially less than the Nyquist noise for all

† Obtainable from Rotolite Elliot Corporation, Rochester, New York, USA (716-385-1463).
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samples for which measurements were made, provided that the resistance of the sample was
larger than 5 k�.

Numerous checks were made. A probe moved along the samples gave a precisely linear
increase of voltage with distance from the electrodes. Measurements at high frequencies
(>50 kHz) gave resistance values almost equal to the DC measured value. A sinusoidal
wave was injected into the sample through a large resistance while it was connected to the
measurement apparatus and gave a flat frequency response. The amplitude response of the
measuring system was also exactly linear† over the ranges used. The voltage–current relations
of the samples did not show any significant non-linearity with the resistance, changing by
<1.5% over the current ranges used. It was positively established that no non-ohmic contacts,
capacitive problems, or other significantly unusual behaviour occurred in the samples. In all
cases, the samples behaved as ordinary pure resistors within the frequency range used.
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Figure 1. Typical noise spectra of carbon for three applied currents.

The noise spectrums were recorded, averaged, corrected for loading, scaled, and plotted
by computer. A typical response is shown in figure 1. The number of readings for each point
was 2 × 104 over a period of 10 s. Several background noise power spectra (for I0 = 0) were
taken, averaged, and then subtracted from each power spectrum. From the curves taken, the
high-frequency cut-off, fs = τ−1

s , was determined by dividing the data into two files at a trial
frequency of fT , one file with f < fT and the other for f > fT . Power regressions were
separately performed on each file by the computer and then fT was moved until the point

† The HP 302A Wave Analyzer used has an amplitude non-linearity at output levels below about 2% of the full-scale
value shown on the output meter. This problem was circumvented by going to a lower current range when levels
below 10% of the full-scale meter reading occurred.
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of intersection of the graph of the two power regression lines was at the selected fT , where
fs = fT . In several cases it was impossible to determine this point, because the slopes of the
two sets of data were about equal, and these runs were discarded.

The rather remarkable relation of fs to I0 appears in figure 2 and figure 3 for two samples.
To show that this result was actual and not caused by some highly random factor in the
experiment, the first sample run was repeated three times and nearly the same curve was
obtained each time. The second sample run was repeated ten times at each of three different
fixed applied currents. The results were that at currents of 840, 1200, and 1860 µA the mean
deviations in the measurement of fs were ±2.3,±2.9, and ±4.5 kHz respectively. This shows
that the variation in individual runs is considerably less than the periodic excursions observed
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Figure 2. High-frequency cut-off, fs , versus applied current, I0; first sample.
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Figure 3. High-frequency cut-off, fs , versus applied current, I0; second sample.
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in both figures. Consequently, these excursions were determined to be stable, genuine, and
repeatable.

The original theory [22] predicted a high-frequency limit, fs , to the 1/f noise power
spectrum such that above fs a 1/f 2 dependence would be observed. This result was only
observed for large values of I0. At lower values of I0 the response was obtained to vary from
this value as shown in the figures. In addition, the original theory was found to be only valid
for resistors of very small cross section. The original theory consequently required further
development as well as some modification, which follows.

3. Derivation of noise spectra for a thin conductor and f < fs

First, the noise spectrum of a conductor of small cross section will be considered. This is
done so that the effects of thermal flow in the current direction may be neglected as compared
with the applied current power flow since the heat flow power is proportional to the area of the
cross section. It is proposed that the mass of a defect and its impacted atoms, as it is driven by
collisions from conduction electrons causing it to move through the lattice and consequently
colliding with and impacting against lattice atoms†, follows the relation

m(t) = m+

(
x

a0 − d
+ 1

)γ

(3.1)

where a0 is the lattice parameter and d the effective diameter of the lattice atom. This equation
would follow from the observation that the impacted mass of a defect or ion that has little or
no binding energy, and is moving in a plasma, in a thin fibre, as a sector in a plane, or as a cone
in a lattice, would have γ = 0, 1, 2, 3 respectively. The more rigid the lattice the higher the
value of γ , since each impacted atom of the defect would be coupled to additional atoms not
adjacent to the impacted mass. In the case of a perfectly inflexible lattice one would expect
γ → ∞ since each impacted atom would be rigidly coupled to the entire lattice. It is clear that
very high values of γ would be found in both metallic and semiconducting solids resulting in
extremely slow migration of the defect from its initial position. This removes an objection to
the theory as previously given.

Further justification is possible. LetN = m(t)/m+ be the total number of impacted atoms,
and n = 1 + x/(a0 − d) be the number of lattice steps that the defect and its impacted atoms
have moved in time t . ThenN/n is the average number of atoms that have accumulated in each
step. In the next step, �N additional atoms will be gained with γ defined as the factor gained
above or below this average. Then �N = γN/n which leads to equation (3.1). For very large
values of N , γ can be taken as a constant, which is justified since each atom of the impacted
mass will not be influenced by impacted atoms many lattice distances apart and, consequently,
all impacted atoms are subject to very similar local conditions giving a constant γ .

Conduction electrons collide with the defect and its impacted mass, and leave with the
average initial velocity, Vinit (t), which is equal to the velocity of the defect at that instant. The
conduction electrons are assumed to leave instantly, and accelerate to an additional velocity of
V−, after which they travel at a constant average velocity or V− +Vinit , forming, on average, a
rectangular wave pulse during the time of flight. The average values of the energies just before
and just after a collision can be equated, giving

1

2
m−V 2

− = 1

2
m(t)V 2

init (t) +
1

2
m−V 2

init (t). (3.2)

† The name ‘pluton’ has been used for the positively charged defects causing 1/f noise while the name ‘nepton’
has been used for the negative ones. The use of these terms was restricted to point defects occurring in near-perfect
lattices.
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It is also assumed that between collisions, phonon and, less probably, photon emission reduce
the velocity of the defect to a negligible value immediately after each collision. This results
in the expression

Vinit (t) =
√
m−
m+

V−

(
x(t)

a0
+ 1

)−γ /2

(3.3)

where V− is the average velocity of the colliding conduction electrons and x(t) the displace-
ment in the field direction. A somewhat simplified and perhaps fanciful schematic diagram of
this process appears in figure 4. Actually there are many thousands of intervals of τc for each
τs , although only a few are shown. Solving for Vinit (t) in terms of t gives

Vinit (t) =
√
m−
m+

V−

(
t

τs
+ 1

)−γ /(2+γ )

(3.4)

with τs defined as

τ−1
s = fs = γ + 2

2

√
m−
m+

V−
a0

. (3.5)

The total average current of the sum of the electron current pulses of conduction electrons
emitted by �N0 defects during the average lifetimes of these defects, τd , which all started at
time t = 0, is given by

i(t) = I0 �N0

N0

[
1 +

√
m−
m+

(
t

τs
+ 1

)−γ /(γ+2)
]

e−t/τd . (3.6)

It should be clear that the average pulse of each individual conduction electron is of constant
amplitude since the initial velocity does not change once the electron is emitted, consequently
giving a rectangular pulse and not a decaying pulse. However, the ensemble velocity of all
the electrons leaving a single defect during the lifetime of the defect decays only because

Time, t

V
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ity

 V
(t

)

0

Vinit (t)

τC

t = τs

distance
= ao

 - d
distance
= ao - d

Defect
Collisions

with additional
lattice atoms

Conduction Electron
    Collisions

Figure 4. Instantaneous velocity of a defect V (t) versus time. Each peak results from the
impact of a conduction electron, where another conduction electron is emitted. The peak velocity,
Vinit , decreases over time because lattice stretching and an additional incremental decrease occur
whenever the impacted mass collides with more lattice atoms after moving a0 − d.
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each individual conduction electron has a slightly different initial velocity. This decay is very
small as compared with the current pulse generated as a consequence of the applied field. The
corresponding autocorrelation function, R(s) = 〈i(t + s)i(t)〉, is given by

R(s) = I 2
0

N0

[
1 +

√
m−
m+

(
2 + γ

2

)(
s

τs
+ 1

)2/(γ+2)
]

e−s/τd (3.7)

with the m−/m+ term neglected. Using the Wiener–Khintchine theorem

S(ω) = 4
∫ ∞

0
R(s) cos(ωs) ds

results in a 1/f noise spectrum given by

Sγ (ω) = 4

(
π

2

)γ /(2+γ )√
m−
m+

I 2
0

N0

(ωτs)
−2/(2+γ )

ω
(3.8)

which is valid in the range
√
m+/m−τ−1

d < f < fs and is referred to as the ‘gamma’ partition.
In the case where γ → ∞ for a rigid lattice, which would be the case for metallic conductors,
this last expression reduces to the Hooge [24] empirical formula:

Sγ (ω) =
√
m−
m+

I 2
0

N0

1

f
. (3.9)

An additional component is also generated, which in the range τ−1
d < f <

√
m+/m−τ−1

d

is greater than the 1/f noise, and is the g–r noise of the defect given by

Sαβ(ω) = 4
I 2

0

N0

τd

(1 + ωτd)2
(3.10)

where τd is the shorter of the lifetime and the observation duration for the defect. These various
partitions of the noise spectrum are illustrated in figure 5. This derivation is consistent with
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Figure 5. Various partitions of defect noise and their frequency limits. α and β are g–r noise for
the defect. γ is the usually observed 1/f noise and δ is the region above the cut-off which has a
slope of κ . For the damped case, 0 < κ < 1 as shown. ε is below α and cannot be easily observed.
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the results reported by Voss and Clarke [26] indicating that the resulting 1/f noise is due to
equilibrium resistance fluctuations and that the process is stationary.

It is noted that equation (3.8) would only allow a frequency dependence between f −1 and
f −2 in the range γ = 0 → ∞. Frequency responses are often observed that are ∼f −0.9.
This is thought to be the result of two factors. First, it is possible that the striking of the
lattice results in a rebound in which the defect actually may move backwards during the lattice
collision. This rebounding is a function of the applied current and has been observed in
the experiments performed and will be described. Second, this difference is also the result
of the current pulses of the conduction electrons which create a noise source that would be
flat into the megahertz region and also proportional to current squared. Such a source has
been reported [25]. A computer simulation was performed by taking an exact f −1 frequency
dependence with a random scattering of points and adding a constant equal to the lowest value
of this f −1 response in an interval of three decades of frequency. This approximated the
conditions of the experiments that are reported here. A least-squares fit of the resulting curve
gave a response of f −0.8. Correcting for background noise would not eliminate this, since this
noise source would not appear at I0 = 0.

4. Derivation of noise spectra for f > fs

The origin of the noise spectrum in the region f > fs depends upon the details of the velocity
of the defect within any interval of τs . As mentioned previously, noise spectra for the frequency
range above fs are experimentally observed to deviate from a 1/f 2 dependence, which would
be the case for a constant velocity in this time interval. This deviation makes some further
theoretical considerations necessary.

The interval between defect lattice collisions is defined as τL. It is only in the first interval
that τL = τs . Thereafter periods that are multiples of τs elapse between lattice collisions, as
shown in figure 4. First, an expression will be found for Vinit , the peak velocity after a collision
with a conduction electron, and also the velocity at which a conduction electron is emitted, for
the case of a negligible applied field and no energy loss due to phonon radiation.

Let t be defined such that 0 < t < τL in any interval. Within this interval the defect is
bombarded with conduction electrons at average intervals τc. After a conduction electron
collision, the velocity of the defect, V (t), drops rapidly to a negligible value before the
collision with the next conduction electron occurs. The emitted conduction electron is rapidly
accelerated by the applied field to a velocity of V− + Vinit after which it continues to travel at
a constant average velocity. It is this total conduction electron velocity that generates the 1/f
noise and the rectangular wave shapes observed by Ralls et al [20].

In a simplistic view of the lattice, the restoring force, f , for a small displacement of a defect
from its initial position, is expressible as f = kx where x is the displacement in the applied
field direction. However, for large displacements this is modified and k becomes a variable
given by k = k0 + k2x

2 + · · · where x is the displacement from the equilibrium position. The
assumption is made—and is verified by the experimental data to be presented—that the defect
is in a highly non-linear region of the displacement and consequently that the second term
dominates and k = k2x

2. The potential, &, of the restoring force is therefore

& = k2x
4

4
. (4.1)

After each conduction electron collision, the defect travels �x = a0 in time �t = τc and loses
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an amount of kinetic energy equal to �&. This results in

�& = k2x
3 �x = �

(
1

2
m+V

2
init

)
= m+Vinit �Vinit (4.2)

and consequently

�Vinit

�t
= −2

Vinit

t
. (4.3)

However, due to phonon and, less probably, photon emission, the defect loses a proportion
of this acceleration since the phonon and photon radiations are proportional to the acceleration.
Introducing κ , such that 0 < κ < 1, as a unitless transmission factor that modifies the
acceleration of the defect for this radiation, consequently gives

dVinit
dt

= −2κ
Vinit

t
. (4.4)

This last equation has a solution:

Vinit (t) = Vinit (0)− Ct−2κ (4.5)

where C is a constant to be determined which must be consistent with the fact that the average
value of Vinit (t) between two defect lattice collisions is required to be given by equation (3.4).

The wave shapes of equation (3.4) and equation (4.5) both modulate the initial velocity of
each conduction electron. The amplitudes of the frequency components of these two quantities
both behave as ∼√

m−/m+. The amplitude of the inter-modulation products of these two
quantities consequently behave as ∼m−/m+ with the result that the amplitude of the inter-
modulation products are a factor of ∼√

m−/m+ ≈ 10−3 below the amplitudes of the two
levels. This means that the noise spectra generated by equation (3.4) and equation (4.5)
interact to a negligible extent, and consequently the frequency spectra may be found from
these two expressions independently. It is concluded that finding the autocorrelation function
of equation (3.4) and equation (4.5) and applying the Wiener–Khintchine theorem to each
separately will produce valid results, with the interaction between them being negligible.

In this derivation, equation (4.5) represents the average wave shape of a single defect while
the total wave shape obtained by combining all wave shapes generated consists of τd/τc groups
where each group is, on average, displaced by τc in time where τd is the lifetime of the defect.
There are a total of N0τc/τd such groups. From this the total noise spectrum generated from
equation (4.5) may be found by repeating the previous methods for finding the autocorrelation
function and using the Wiener–Khintchine theorem. This results in

Sδ(ω) = K
(ωτc)

2κ−1

ω
(4.6)

where K is a constant that may be evaluated by equating equation (3.8) and equation (4.6) at
the point f = fs . This result is

K = 2π(γ−2)/(γ+2)

√
m−
m+

I 2
0

N0
(ωsτc)

1−2κ (4.7)

with the consequence that

Sδ(ω) = 2π(γ−2)/(γ+2)

√
m−
m+

I 2
0

N0

(
ω

ωs

)2κ−1 1

ω
(4.8)

for f > fs .
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5. Noise spectrum for a thick conductor and f < fs

Essentially, the current of the conduction electrons is composed of two different components.
The first is the current produced by the external field, and is I0. The second is a current, Iκ ,
produced by a movement of electrons caused by the thermal energy that can be considered
flowing in the material. The Stefan–Boltzmann law gives the radiated thermal energy arriving
on any surface of a conducting sample. This thermal energy can be considered to be transferred
by conduction electrons, which carry most of this energy, to the opposite surface where it is
radiated. Thermal energy arriving on this opposite surface is transferred by the conduction
electrons to the initial surface where it is also radiated, resulting in thermal equilibrium. In
the direction of the applied current it is possible to partition the conduction electrons at any
instant into two macroscopic currents, I0 + Iκ and −Iκ , resulting is a net thermal current of
zero. The I0 + Iκ component generates 1/f noise while −Iκ does not show a significant noise
component in our experiments and it is conjectured that it contributes negligible momentum
to the defect due to the interfering effects of the impacted mass. It is only in very thin samples
that this thermal flow of the conduction electrons is negligible as compared with the power of
the applied current, I 2

0R0. The power, W , generated by Iκ , is given by the Stefan–Boltzmann
law:

W = I 2
κ R0 = σT 4A (5.1)

where A is the cross-sectional area of the sample, σ is the Stefan–Boltzmann constant
=5.67 × 10−8 W m−2 K−4, and R0 is the sample resistance.

On the microscopic level each conduction electron carries an initial current of (Iκ +I0)/N0,
of which I0/N0 is lost on average in a collision. Consequently, neglecting rebounds and
resonances,

κ = Iκ

I0 + Iκ
. (5.2)

The experimentally measured noise power spectrum above fs is observed to behave as f −nδ ,
which defines nδ . Then, in view of equation (4.8),

κ = 1 − nδ

2
(5.3)

which results in the expression

nδ = 2I0

I0 + Iκ
. (5.4)

It is observed, ignoring resonance effects, that if I0 = 0 → ∞ then nδ = 0 → 2. Other factors
can influence these values, as will be discussed.

In the case where I0 � Iκ and κ = 0, the influence of the external field exceeds that
of internal thermal effects. In this case the acceleration is negligible and therefore the defect
mass moves at a constant average velocity which is what would be expected. In the case where
I0 = 0, only the two Iκ -currents exist and only the effects of the thermal motion are observed
which, as will be shown, results in a 1/f noise source at zero current.

On the basis of the above theory it is apparent that for a sample of thick cross section,
the evaluation of the equations of section 3 for f < fs requires the following obvious mod-
ifications. Equation (3.5) becomes

fs = τ−1
s = γ + 2

2

√
m−
m+

,(I0 + Iκ)

e−N0a0
(5.5)
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where , is the sample length. Equation (3.8) becomes

Sγ (ω) = 4

(
π

2

)γ /(2+γ )√
m−
m+

(I0 + Iκ)
2

N0

(ωτs)
−2/(2+γ )

ω
(5.6)

which, for a rigid lattice (γ → ∞) and zero current, is

Sγ (ω) =
√
m−
m+

I 2
κ

N0

1

f
. (5.7)

This last equation is apparently a new type of thermal noise source and is different in
characteristics from Nyquist noise. It originates because of the thermal motion of the defects
causing a modulation of the initial velocities of the conduction electrons whereas Nyquist noise
is the thermal motion of the conduction electrons themselves. The spectral power of this noise
for constant resistance varies with the cross-sectional area of the sample and increases with
temperature as T 4, while Nyquist noise is constant with cross-sectional area and increases
proportionally to T .

6. Resonance phenomena

The experimentally measured functions fs(I0), illustrated in figure 2 and figure 3, have
what appears to be periodic resonances. Similar periodic resonances also appear in the
experimentally measured slopes, nδ , above fs , in figure 6 and figure 7. This is qualitatively
explained by the idea that when the average frequency of collisions experienced by the
conduction electrons, τ−1

c , is equal to the lattice mechanical resonant frequency or a multiple
thereof, then an enhancement of the velocity given by equation (4.5) occurs. This gives rise
to the apparent resonances that were observed in these figures. Very roughly, if the sample is
∼10 mm long and the phonon velocity is ∼300 m s−1, then f ∼ 15 kHz (which is the frequency
of the half-wave fundamental mode of sample vibration), which is roughly the value that is
observed.
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Figure 6. nγ and nκ versus applied current I0; first sample.
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Figure 7. nγ and nκ versus applied current I0; second sample.

It was found that the carbon resistors used all had nγ about equal to one, as shown in
figure 6 and figure 7. In this case γ is large but not infinite; otherwise fs would not exist, by
equation (5.5). This creates numerous resonant frequencies that are activated by the driving
force of the bombardment of the conduction electrons and suggests a process that is a kind
of emission of conduction electrons stimulated by phonons. It is also noted that in figures 6
and 7 the γ -curves also show small resonances, which indicates that some ringing or bouncing
during a lattice collision occurs. This would also contribute to the observed nγ being somewhat
below unity at certain applied currents, as previously discussed.

It should be stressed that the resonances were only seen in the noise generated. At no time
did the voltage–current curves or resistance measurements show any sign of these resonances.

7. Experimental results

In figure 6 and figure 7 the experimentally measured values ofnγ andnδ are shown. The samples
were maintained at a temperature of 23 ± 0.5 ◦C. In these figures, Iκ is always calculated only
from the measured resistance, R0, and the measured dimensions of the samples by using
equation (5.1). In figure 6 the value of Iκ was 110 µA, calculated from equation (5.1) using
the sample conduction path which was 9 mm long, 4 mm wide, and 0.18 mm thick, with a
measured sample resistance R0 = 29.0 k�. In figure 7, Iκ = 367 µA was calculated for a
sample that was 9 mm wide, 10 mm long, and 0.18 mm thick, with a measured resistance of
R0 = 7.1 k�. The theoretical curves produced using these values for Iκ and equation (5.4)
have been plotted in both figures, which show good agreement with the theory for the smoothed
dampened case.

These results depend heavily on the selection of carbon for the sample. Due to its non-
rigidity, its value of γ would be considerably below that found for metals and silicon by using
equation (5.5) for the value of fs . This places fs at a frequency where the noise is well above
the thermal background noise.
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Figure 8 shows the data of figure 6 in a linear plot, and the constant Iκ = 110 µA added to
the horizontal axis. The dotted line is the smoothed average of the points and shows that this
relation follows the linear dependence of equation (5.5). But it was impossible to determine
all the constants of this equation, so the value of the slope of the dotted line could not be
claimed as being predicted by this equation, although the linear relation is consistent with the
predictions of the theory.
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Figure 8. Cut-off frequency, fs , versus total current, (I0 + Iκ ); first sample.

The majority of samples studied showed most of the effects described here. Generally a
high-frequency break at some current was found and consequently a value of fs for the current
applied. However, only a few samples showed fs at a sufficient number of values of the applied
currents and at a low enough frequency that curves such as those shown in the figures could be
obtained reliably. Attempts at heating the samples for extended times to the point of charring
the card stock and also at freezing them did not alter this situation. The most interesting
results were obtained with a sample that had aged for three months after being made, which
is the sample used in figures 2 and 6, although it is far from certain that aging had anything
to do with the results. The sample used in figures 3 and 7 was investigated the day after the
sample was made. At this point it is not known what controls these properties. Analysis in a
higher frequency range would not help, since this would put the noise to be measured under the
thermal background noise. It could be assumed that τs is the quantity varying due to variations
in the average lattice spacing a0, but at present this is only a conjecture.

8. Observation of a low-frequency cut-off

A low-frequency end to the 1/f dependence was observed for many of the samples with a
typical response shown in figure 9. This end point would also vary with the applied current as
fs does. The measured slopes were nβ = 1.76 and nγ = 0.90 as shown. With the estimated
slope error of ≈0.2 for electron noise, as previously discussed, this would give nβ ≈ 1.96 as
compared with its theoretical value of 2.0 and nγ ≈ 1.10 which is in good agreement with
the above theory. From equation (3.8) it is possible to roughly estimate γ for carbon, which
for nγ ≈ 1.10 yields γ ≈ 20. This would place a lower limit on γ for silicon and the metals,
which would have values perhaps orders of magnitude higher.
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This sample used was cut from the same material as the samples of the other figures but
with a conduction path 4 mm long and 4 mm wide. This low-frequency cut-off, fL, was
always observed for samples with conduction paths <4 mm, but not for samples with longer
conduction paths. It is evident from this that the observation time for the defect is the limiting
factor, and not the lifetime. It is seen that there is a distinct end to the 1/f noise, at a theoretical
frequency given as fL = π−2√m+/m−τ−1

d ≈ 50τ−1
d for large γ . Although the actual end

of the 1/f response, which is also the end of the 1/f 2 response, was not attainable with the
present apparatus, it is clear that the end of the observable 1/f spectrum has been found. The
1/f response continues for almost another two decades, but is masked under the g–r noise of
the defect as shown in figure 5.

9. Conclusions

The purpose of the present work was to show that fs varies with the applied current. Not only
has this been positively established but also from this work two distinct physical processes
have been identified that affect the behaviour of 1/f noise in carbon. Below fs the noise
spectrum is determined by the varying mass of the defect due to impaction against lattice atoms,
and the assumption of equation (3.1) applied. This equation was shown to be reasonable,
and the experimental data fit its predictions well. Above fs the spectrum was determined
by the influence of heat flow, phonon losses, and mechanical vibrations of the lattice, all
influencing the initial velocities of conduction electrons and consequently the wave shape of
the conduction electrons over the lifetime of the defect. This assumption was mainly contained
in equation (4.1) which was also shown to be reasonable, and its consequences fit the data well.
These two assumptions were derivable from a very elementary basis similar to that used in
considering generation–recombination and thermal noise, which were the original targets of
the theoretical study. It is remarkable that the simple view of the conduction process adopted
here has been successful in explaining these highly involved phenomena.

Numerous new properties of 1/f noise have been reported here which are due to the
relatively low γ of carbon as compared with other solids. High values of γ make these
properties very difficult to observe. This is probably why they have not been previously
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reported for substances with more rigid lattices such as the coordinated metals and the well-
known semiconductors, despite the immense amount of work that has been devoted to observing
their noise properties. What has not been done is establishing that the mechanism described
here is also the source of 1/f noise in these other materials; we hope that this will be addressed
in future work.

The above theory, after this further verification, may advance the field of noise theory from
an area of unsolved problems into an area where noise measurements could provide data about
the characteristics of defects unobtainable by other means. It certainly could provide deep
insight into the nature of the defects themselves. It is not impossible that this could eventually
lead to the discovery of methods for constructing low-defect conductors that operate at room
temperature with properties, perhaps, approaching those of a superconductor.

References

[1] Celasco M, Fiorillo F and Mazzetti P 1976 Phys. Rev. Lett. 36 38
[2] Celasco M, Fiorillo F and Mazzetti P 1979 J. Appl. Phys. 50 11
[3] Chen T M, Dieu T P and Moore R D 1985 IEEE International Reliability Physics Symp. CH 2113-9/85, p 87
[4] Dagge K, Briggmann J, Reuter C, Seeger A and Stoll H 1996 AIP Conf. Proc. 371 65
[5] Dragge K, Frank W, Seeger A and Stoll H 1996 Appl. Phys. Lett. 68 1198
[6] Feng S, Lee P and Stone A 1986 Phys. Rev. Lett. 56 1960
[7] Fleetwood D and Giordano N 1985 Phys. Rev. B 31 1157
[8] Fleetwood D and Scofield J 1990 Phys. Rev. Lett. 64 579
[9] Fleetwood D, Meisenheimer T and Scofield J 1993 AIP Conf. Proc. 285 339

[10] Gusinski G et al 1992 Sov. Phys.–Solid State 26 307
[11] Johnson M and Fleetwood D 1997 Appl. Phys. Lett. 70 1158
[12] Keener C and Weissman M 1991 Phys. Rev. B 44 9178
[13] Koch R H, Lloyd J R and Cronin J 1985 Phys. Rev. Lett. 55 2487
[14] Morozov A and Sigov A 1992 Sov. Phys.–Solid State 34 245
[15] Pelz J, Clarke J and King W 1988 Phys. Rev. B 38 10 371
[16] Potemkin V, Stepanov A and Zhigal’skii G 1993 AIP Conf. Proc. 285 61
[17] Pelz J and Clarke J 1985 Phys. Rev. Lett. 55 738
[18] Pellegrini B 1987 Phys. Rev. B 35 571
[19] Ralls K and Buhrman R 1991 Phys. Rev. B 44 5800
[20] Ralls K, Ralph D and Buhrman R 1989 Phys. Rev. B 40 11 561
[21] Vinokur V and Obukhov S 1989 Sov. Phys.–JETP 68 126
[22] Stephany J F 1998 J. Appl. Phys. 83 3139
[23] Stephany J F 1992 Phys. Rev. B 46 12 175
[24] Hooge F N 1972 Physica 60 130
[25] Hooge F N and Hoppenblouwers A 1969 Physica 45 386
[26] Voss R F and Clarke J 1976 Phys. Rev. B 13 556


